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ABSTRACT

In this paper, two important issues are raised for multistep variational data assimilation in which broadly

distributed coarse-resolution observations are analysed in the first step, and then locally distributed high-

resolution observations are analysed in the second step (and subsequent steps if any). The first one concerns

how to objectively estimate or efficiently compute the analysis error covariance for the analysed field obtained

in the first step and used to update the background field in the next step. To attack this issue, spectral

formulations are derived for efficiently calculating the analysis error covariance functions. The calculated

analysis error covariance functions are verified against their respective benchmarks for one- and two-

dimensional cases and shown to be very (or fairly) good approximations for uniformly (or non-uniformly)

distributed coarse-resolution observations. The second issue concerns whether and under what conditions the

above calculated analysis error covariance can make the two-step analysis more accurate than the conventional

single-step analysis. To answer this question, idealised numerical experiments are performed to compare

the two-step analyses with their respective counterpart single-step analyses while the background error

covariance is assumed to be exactly known in the first step but the number of iterations performed by the

minimisation algorithm is limited (to mimic the computationally constrained situations in operational data

assimilation). The results show that the two-step analysis is significantly more accurate than the single-step

analysis until the iteration number becomes so large that the single-step analysis can reach the final convergence

or nearly so. The two-step analysis converges much faster and thus is more efficient than the single-step analysis

to reach the same accuracy. Its computational efficiency can be further enhanced by properly coarsening the grid

resolution in the first step with the high-resolution grid used only over the nested domain in the second step.

Keywords: data assimilation, variational analysis, multistep, multiscale, spectral formulation

1. Introduction

It has been well recognised that using a Gaussian function

with a synoptic-scale de-correlation length to model the

background error covariance in data assimilation can

inadvertently hamper the ability of the analysis to assimilate

mesoscale structures. As a remedy to this problem, a super-

position of Gaussians has been formulated (Purser et al.,

2003), and double Gaussians have been used to model

the background error correlation in variational data

assimilation at National Centers of Environmental Predic-

tion (NCEP) with increased computational cost (Wu et al.,

2002), but the mesoscale features are still overly smoothed

and inadequately resolved in the analysed incremental fields

even in areas covered by remotely sensed high-resolution

observations, such as those from operational weather radars

(Liu et al., 2005). This raises an important question on how

to optimally assimilate patchy high-resolution observations,

such as those remotely sensed from radars and satellites,

along-side sparse observations into a high-resolution model.

Ideally and theoretically, if the background error covar-

iance is exactly known and perfectly modelled in data

assimilation, then all different types of observations can be

optimally analysed in a single batch. Such a single-step

approach has been widely adopted in operational varia-

tional data assimilation. However, since the background

error covariance is largely unknown and often crudely
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modelled, the analysis is not truly optimal. Furthermore,

even if the background error covariance is accurately

modelled (for idealised cases such as those to be presented

in this paper), the analysis obtained by a minimisation

algorithm is still not optimal unless the minimisation is

performed thoroughly with a sufficiently large number of

iterations to reach the true global minimum of the cost-

function. In operational variational data assimilation, the

number of iterations is limited by the computational cons-

traints and often far from sufficient due to the extremely

large dimension of the minimisation problem, and as a

result, the analysis could be far from optimal. This specula-

tion can be more or less supported by the recent study of

Li et al. (2015) in which double Gaussians were also used

to model the background error correlation but the cost-

function was truly minimised in their idealised experiments.

In particular, the double Gaussians were found to be quite

effective in assimilating patchy high-resolution observations

along-side sparse observations although the true back-

ground error correlation was not exactly modelled by the

double Gaussians in either of their multiscale variational

schemes (AB-DA and MS-DA). In view of the aforemen-

tioned limitations in operational data assimilation and

inspired by the study of Li et al. (2015), we are motivated

to explore newmultiscale andmultistep approaches that can

be not only more effective and accurate but also more

efficient than the single-step approach for assimilating

different types of observations with distinctively different

spatial resolutions and distributions (including remotely

sensed high-resolution observations).

Previously, Xie et al. (2011) proposed a sequential

multistep variational analysis approach for a multiscale

analysis system with observations reused in each step in a

fashion similar to the Barnes successive correction scheme.

They noted that the background error covariance should

change with different steps to incorporate scale-dependent

information (like the Barnes successive correction scheme)

but left this issue to future studies for further improve-

ments. Gao et al. (2013) adopted a real-time variational

data assimilation system in which a two-step approach was

employed to analyse observations of different spatial

resolutions. In their two-step approach, a reduced back-

ground error de-correlation length was used in the second

step, but the background error de-correlation length and

error variances for different model variables were specified

empirically in each step. This left the issue on how to

objectively estimate the error covariance for the updated

background largely unaddressed.

For the traditional single-step variational analysis, the

background error covariance can be estimated from the

time series of innovation (i.e. observation minus back-

ground in the observation space) by using the innovation

method (Hollingsworth and Lonnberg, 1986; Lonnberg

and Hollingsworth, 1986; Xu and Wei, 2001, 2002; Xu

et al., 2001) or from the time series of difference between

two model forecasts verified at the same time by using the

National Meteorological Center (NMC) method (Parrish

and Derber, 1992; Derber and Bouttier, 1999). The back-

ground error covariance estimated by the above method

can be readily used for the variational analysis in the first

step of a multistep approach. In each subsequent step,

however, the background error covariance should be re-

estimated for the updated background, that is, the analysis

produced from the previous step. The innovation method

can be modified and used for the re-estimation if the

observations used in current step are not previously used

and thus are new and independent of the new background

and if the following two conditions are also satisfied (as

required by the innovation method): (1) the time series of

new innovation (that is, new observation minus new

background) still satisfy the ergodicity assumption (and

thus can be used as an ensemble), and (2) the statistic

structures of the new innovations remain to be horizontally

homogeneous and isotropic. These two conditions often

cannot be satisfied, as they require that the distribution of

the observations used in each step is not only horizontally

homogeneous (or nearly so) but also largely fixed in the

time series. Thus, the innovation method must be simplified

with reduced conditions to re-estimate the new background

error variance only. In particular, as shown in (9) of Xu

et al. (2015), by using the local spatial mean (instead of

temporal mean) as the ensemble mean, the background

error variance can be estimated as a smooth function of

space from the new innovation field (rather than an

ensemble collected from a time series) in each step of a

multistep approach. The background error de-correlation

length, however, is still specified empirically in each step of

the multistep radar wind analysis system of Xu et al. (2015).

None of the studies cited above has adequately addressed

or satisfactorily solved the problem on how to objec-

tively estimate or efficiently compute the error covariance

for the updated background. We believe that this issue is

very important for a multistep variational approach

because the analysis increment in each subsequent step is

largely controlled by the error covariance of the updated

background, while directly computing the error cova-

riance [see eq. (1b)] is impractical for operational data

assimilation.

In this study, a new approach is explored to efficiently

but approximately calculate the analysis error covariance

for multiscale and multistep variational data assimilation.

For simplicity, we will consider only two types of observa-

tions with distinctively different spatial resolutions and

distributions. The first type consists of coarse-resolution

observations distributed over the entire analysis domain,

while the second type consists of high-resolution observations
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densely distributed over a fraction of the analysis domain.

A two-step variational method will be designed to analyse

the coarse-resolution observations in the first step and

then the high-resolution observations in the second step.

As a new aspect of this two-step variational method,

spectral formulations will be derived and simplified for

efficiently calculating the analysis error covariance in the

first step to update the background error covariance in the

second step. The paper is organised as follows. The spectral

formulations are derived in the next section after a brief

review of the formulations for the optimally analysed state

vector and associated error covariance. Using the spectral

formulations, two-step variational analyses are performed

versus single-step variational analyses for one-dimensional

cases in Section 3 and for two-dimensional cases in Section

4 to support the speculation stated at the beginning of this

section. Conclusions follow in Section 5.

2. Spectral formulations for efficiently estimating

analysis error covariance

2.1. Review of formulations for optimal analysis

When the variational analysis is formulated optimally

based on the Bayesian estimation theory (see Chapter 7

of Jazwinski, 1970), the background state vector b is

updated to the analysis state vector a with the following

analysis increment:

Da � a � b ¼ BHTðHBHT þ RÞ�1d; (1a)

and the background error covariance matrix B is updated

to the following analysis error covariance matrix:

A ¼ B� BHTðHBHT þ RÞ�1HB; (1b)

where R is the observation error covariance matrix, H

denotes the (linearised) observation operator, ( )T denotes

the transpose of ( ), d�y�H(b) is the innovation vector

(observation minus background in the observation space),

y is the observation vector, H( ) denotes the observation

operator and H is the linearised H( ).

Theoretically, for a linear observation operator H( )�H,

eq. (1b) provides a precise formulation for updating B to A

in each subsequent step of a multistep variational analysis,

but the required computational cost is impractical for

operational applications. Thus, what we need here is to

simplify eq. (1b) so that A can be calculated approxi-

mately with much reduced computational cost. This issue

will be addressed in the next two subsections by transform-

ing eq. (1b) into simplified spectral forms for coarse-

resolution innovations in one- and two-dimensional spaces

so that A can be very efficiently calculated with certain

approximations.

As mentioned in the introduction, we will simply

consider only two types of observations: (1) coarse-resolution

observations either uniformly or non-uniformly distri-

buted over the analysis domain, and (2) high-resolution

observations over a fraction of the analysis domain. The

coarse-resolution observations are analysed in the first step

over the entire domain. The high-resolution observations

are then analysed in the second step over a nested domain

with the background state b updated by a obtained from

the first step and the background error covariance B

updated by the approximately calculated A using the

spectral formulation. After this, the next important ques-

tion is whether and how the approximately calculated A

can make the two-step analysis more accurate than the

single-step analysis of the coarse-resolution and high-

resolution observations together if the number of iterations

is not sufficiently large and thus neither analysis can

be optimal (as explained in Section 1). This question will

be answered in Section 3 for one-dimensional cases and in

Section 4 for two-dimensional cases.

2.2. Spectral formulations for one-dimensional case

Consider that there are M coarse-resolution observa-

tions uniformly spaced every Dxco over a one-dimensional

analysis domain of length D�MDxco�NDx, where N is

the number of analysis grid points and Dx is the grid

spacing. By periodically extending D in x for the random

fields of observation error and background error, eq. (1b)

can be transformed into the following spectral form in the

wavenumber space:

Sa ¼ S� SPT
MNðPþ nCÞ�1PMNS; (2)

where Sa � FNAFN
H, ( )H denotes the Hermitian transpose

of ( ), S � FNBFN
H (or C � FMRFM

H) is a diagonal matrix in

RN (or RM), FN (or FM) is the normalised discrete Fourier

transformation (DFT) matrix in RN (or RM), n�N/M�
Dxco/Dx (�1), P�PMNSPMN

T is a diagonal matrix in RM

for N�M, and PMN is a M�N matrix given by (19) of

Xu (2011). When n happens to be an odd integer, PMN is

simply given by (IM, . . ., IM) where IM is the unit matrix in

RM. The spectral formulations in Section 2.2 of Xu (2011)

are used in deriving eq. (2) and above results.

As MBN, Sa is not diagonal, but its non-zero off-

diagonal elements are sparse and negligibly small. Using

eq. (2), the diagonal part of Sa can be very efficiently

calculated from S and C, as shown in the Appendix. The

diagonal part of Sa can then be transformed also very

efficiently by the inverse DFT back to the physical space in

the form of se
2Ca(xi � xj) to give the ijth element of A, where

se
2 (�constant) and Ca(x) denote the approximately cal-

culated analysis error variance and correlation function,

MULTISTEP VARIATIONAL DATA ASSIMILATION 3



respectively. In this case, as the analysis error power

spectrum associated with the approximately calculated A

is given by the diagonal part of Sa in the discrete form of

Sa(ki), where ki�iDk is the ith discrete wave number and

Dk�2p/D is the minimum resolvable wavenumber, the

analysis error covariance can be also obtained approxi-

mately in the following continuous form:

r2
eCaðxÞ ¼ 2N�1

XNþ

i¼0

qiSaðkiÞcosðkixÞ; (3)

where qi�1 for 15iBNq, qi�½ for i�0 and i�Nq�

Int[(N�1)/2]]N��Int[N/2], and Int[ ] denotes the in-

teger part of [ ]. The derivation of eq. (3) is similar to that

in (17) of Xu (2011) but applied to the inverse Fourier

transformation of Sa(ki) with Ca(x) obtained by the ideal

trigonometric polynomial interpolation. When the M coarse-

resolution observations are not uniformly spaced over the

analysis domain, the above formulations still can be used to

calculate A approximately (see Sections 3.3 and 3.4).

2.3. Spectral formulations for two-dimensional case

Now,we consider that there areM�MxMy coarse-resolution

observations uniformly spaced by Dxco along the x direc-

tion and Dyco along the y direction in a two-dimensional

analysis domain of length Dx�MxDxco�NxDx and width

MyDyco�Dy�NyDy, where Nx (or Ny) is the number of

analysis grid points and Dx (or Dy) is the grid spacing along

the x (or y) direction in the analysis domain. In this case, by

periodically extending Dx in x and Dy in y for the random

fields of observation error and background error, eq. (1b)

can be transformed into the same spectral form as in eq. (2),

except that FN�FNx�FNy (or FM�FMx�FMy) is now the

tensor product of the two normalised DFTmatrices FNx and

FNy (or FMx and FMy) with N�NxNy (or M�MxMy),

n�nxny, nx�Nx/Mx�Dxco/Dx (�1), ny�Ny/My�Dyco/
Dy (�1), andPMN�PMxNx�PMyNy is aM�Nmatrix with

PMxNx and PMyNy given in the same way as described for the

one-dimensional case in eq. (2). The spectral formulations

in Section 2.3 of Xu (2011) are used in deriving the two-

dimensional spectral form of eq. (2) and the above results.

Again, as MBN, Sa is not diagonal but its non-zero off-

diagonal elements are sparse and negligibly small. Using

the two-dimensional spectral form of eq. (2), Sa can be

easily calculated from S and C (see the Appendix). The

diagonal part of Sa can be then transformed efficiently

back to the physical space in the form of se
2Ca(xi�xj) to give

the ijth element of A, where x � (x, y), se
2 and Ca(x) denote

the approximately calculated analysis error variance and

correlation function, respectively. Now the diagonal part

of Sa has the discrete form of Sa(ki, kj) where ki�iDkx
(or ky�jDky) is the ith (or i’th) discrete wavenumber in kx

(or ky) and Dkx�2p/Dx (or Dky�2p/Dy) is the minimum

resolvable wavenumber in the x (or y) direction. From

Sa(ki, kj), the analysis error covariance can be also obtained

approximately in the following continuous form:

r2
eCaðxÞ ¼ 4ðNxNyÞ

�1

�
XNxþ

i¼0

XNyþ

j¼0

qiqjSaðki; kjÞcosðkixÞcosðkjyÞ;
(4)

where qi (or qj)�1 for 15i (or j)BNqx (or Nqy), qi (or qj)�
½ for i (or j)�0 and for i�Nqx (or j�Nqy), Nqx�

Int[(Nx�1)/2]]N�x�Int[Nx/2], and Nqy�Int[(Ny�1)/2]

]N�y�Int[Ny/2]. The derivation of eq. (4) is similar to

that of eq. (3) but extended for the two-dimensional case.

When the M coarse-resolution observations are not uni-

formly spaced in the x- and y-directions over the entire

analysis domain, the two-dimensional spectral form of

eqs. (2) and (4) remain approximately applicable (see

Section 4.3).

3. Numerical experiments for one-dimensional

cases

3.1. Descriptions of data and experiments

In this section, one-dimensional experiments are performed

by using observations from the same data source (i.e. the

radial velocities scanned by the NSSL phased array

Doppler radar for the Oklahoma squall line on 2 June

2004) with the same model-produced background field as

those described in Section 5.2 of Xu (2007) and Section 3.1

of Xu and Wei (2011) except for the following treatments:

(1) The analysis domain size is set to D�NDx�110.4 km

with N�23�20�460 and Dx�0.24 km, where Dx is

the analysis grid resolution and is set to be the same as

the original radar radial-velocity observation resolution.

(2) The coarse-resolution innovations are produced by sub-

tracting the background values from the original observa-

tions interpolated atM (�20) observational points that are

uniformly (or non-uniformly) thinned from the original

460 observation points with the observation resolution

coarsened exactly (or roughly) to Dxco�23Dx over the

entire domain of length D as shown by the blue�signs in

Fig. 1 (or Fig. 9), while the high-resolution innovations are

obtained by subtracting the background values from the

remaining original observations at M? (� 73) observational

points in a nested domain of length D/6 as shown by the

purple � signs in Fig. 1 (or Fig. 9).

The observational and background errors are assumed to

be Gaussian random and homogeneous over the analysis

domain. The difference of these two errors is represented

by the innovation. The innovation is thus also Gaussian

random and homogeneous, and so does the analysis

4 Q. XU ET AL.



increment. This implies that the innovation and analysis

increment fields can be extended periodically beyond the

analysis domain, so the spectral formulations derived in the

previous section can be used without actually extending the

observation and background fields periodically beyond

the analysis domain. As will be explained later and shown

in Subsection 3.4 and Section 4, the spectral formulations

can be also used without periodically extending the inno-

vation and analysis increment fields.

The observation error variance is set to the estimated

value of so
2�2.52m2s�2, as in Section 5.2 of Xu (2007),

while the background error variance is estimated by

sb
2�sd

2�so
2�25m2s�2, where sd

2 is the innovation vari-

ance estimated by the spatially averaged value of squared

innovations. The background error correlation function is

modelled by the following double Gaussians:

CbðxÞ ¼ 0:6expð � x2=2L2Þ þ 0:4expð � 2x2=L2Þ (5)

with L�10 km (�41.67Dx). This correlation function

mimics the operationally used double Gaussians (see

Sections 2 and 4 of Wu et al., 2002). When the analysis

domain is extended periodically, the error correlation

function is also extended periodically and this is done for

each Gaussian function in the same way as shown in

eq. (1b) of Xu and Wei (2011). The structure of Cb(x) is

shown by the solid red curve in Fig. 2. Note that D �� L

and Cb(x) becomes negligibly small as jxj�3L (: 125Dx),
so Cb(x) is virtually not affected by the periodic extension

over the primary period of �D/2BxBD/2. Thus, with the

innovations extended periodically beyond the analysis

domain, the analysis can be performed over the analysis

domain by using only those innovations that are located

within the extended domain of �D/2�3L5x5D/2�3L.

The background error power spectrum can be obtained

from the periodically extended sb
2Cb(x) by the DFT over D

in the discrete form of S(ki), where S(ki) denotes the ith

diagonal element of S [see (12)-(13) of Xu, 2011]. For the

double-Gaussian form of Cb(x) in eq. (5), S(ki) can be also

derived analytically [in the same way as for the single

Gaussian form in eqs. (10)�(11) of Xu and Wei, 2011] in the

following form:

SðkiÞ ¼ r2
bðL=DxÞð2pÞ1=2

� ½ð0:6=A1Þ expð�k2
i L2=2Þ þ ð0:2=A2Þ

� expð�k2
i L2=8Þ�; (6)

where A1�Siexp[�(iD)2/(2L2)]:1 and A2�Siexp

[�2(iD)2/L2]:1 for D��L. The discrete power spec-

trum S(ki) is shown by the red�signs in Fig. 3. In the limit

of N0� (or D0� with fixed Dx), Dk�2p/D00 and

S(ki) approaches its continuous counterpart S(k) plotted by

–15
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Fig. 1. Uniformly distributed coarse-resolution innovations (c-inno) plotted by blue�signs, and high-resolution innovations (h-inno)

plotted by purple x signs. The solid black curve plots the benchmark analysis increment Da. The dashed red curve plots the analysis

increment Da20 from SE with 20 iterations. The solid green curve plots the analysis increment DaI-20 from the first step of two-step

experiment (TEA, TEB or TEC) with 20 iterations. The dashed blue, dotted cyan and dot-dashed grey curves plot the analysis increments

DaA20 from TEA, DaB20 from TEB and DaC20 from TEC, respectively, with 20 iterations.
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the red curve in Fig. 3. As shown in Fig. 3, S(ki) [or S(k)]

decreases rapidly and becomes negligibly small as jkij
(or jkj) increases to and beyond 10Dk�5.7�10�4m�1

but within N-Dk5ki5N�Dk (or �p/DxBk5p/Dx) where
N��Int[(1�N)/2].

Two sets of innovations are generated for the one-

dimensional experiments in this section. Both sets consist

of M coarse-resolution innovations and M? high-resolution
innovations. The coarse-resolution innovations are distrib-

uted uniformly in the first set but non-uniformly in the

second set. The observation errors are assumed to be

spatially uncorrelated, so R�so
2I in eq. (1), where I is

the unit matrix in the innovation space (with or without

periodic extension). The optimal analysis increment com-

puted directly and precisely from eq. (1a) for each set of

innovations (with or without periodic extension) is used as

the benchmark to evaluate the accuracies of the analyses

obtained from the following described single-step and two-

step experiments with the same set of innovations.

The single-step experiment, named SE for short, also

analyses all the innovations together in each set (with or

without periodic extension), but the analysis is performed by

applying the standard conjugate gradient descent algorithm

with a limited number of iterations (to mimic operational

applications) to minimise the following cost-function:

J ¼ cTBcþ jHBc� dj2=r2
o; (7)

where the analysis increment Da � a�b is transformed

to the new control vector c by Da�Bc to mimic the

operational used preconditioning (see Section 4 of Derber

and Rosati, 1989 and Section 2 of Wu et al., 2002). The

two-step experiments analyse the coarse-resolution innova-

tions (with or without periodic extension) in the first step

and then the high-resolution innovations in the second

step. In the first (or second) step, the analysis is performed

by applying the standard conjugate-gradient descent algo-

rithm with limited number of iterations to minimise the

same form of cost-function as in eq. (7) but with d given by

the coarse-resolution (or high-resolution) innovations.

Three types of two-step experiments, named TEA, TEB

and TEC, are designed with different treatments of B in

the second step. In TEA, B is updated to A with the ijth

element of A given by se
2Ca(xi�xj) according to eq. (3). In

TEB, B is not updated in the second step. In TEC, only the

error variance is updated from sb
2 to se

2, but the error

correlation function is still modelled by Cb (x) in the second

step, and thus the ijth element of B is updated to se
2Cb

(xi�xj) in the second step. For each two-step experiment,

the control-variable transformation is DaI�BcI in the first

step, but DaII�A?cII in the second step, where DaI (or DaII)
is the analysis increment produced over the entire analysis

domain in the first (or second) step, cI (or cII) is the new

control vector in RN (or RN?) used in the first (or second)

step, N�460 (or N’�77:N/6) is the number of grid

points of the entire domain (or nested domain), and A? is a
N�N? matrix truncated from A by retaining only the N?
columns that are associated with the N? elements of cII.

As the control vector dimension is N (� 460) in the first

step but reduced to N? (�77:N/6) in the second step, each

iteration is computed much more efficiently in the second

step than in the first step.
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Fig. 2. Cb(x) plotted by red curve and Ca(x) plotted by dotted

blue curve.
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Fig. 3. Discrete background error power spectrum S(ki) (that

forms the diagonal matrix S) plotted by red�signs, and discrete

analysis error power spectrum Sa(ki) (that forms the diagonal

part of Sa) plotted by green�signs, where ki�iDk and Dk�2p/
D�5.7�10�5m�1. The solid red (or green) curve plots S(k) [or

Sa(k)], that is, the continuous counterpart of S(ki) [or Sa(ki)] in the

limit of D�NDx0� for fixed Dx.
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3.2. Results for the first set of innovations with

periodic extension

As the uniformly distributed coarse-resolution innovations

are analysed in the first step with periodical extension, S is

updated to Sa according to eq. (2). As shown by the full-

matrix structure of Sa in Fig. 4a, Sa is not diagonal (since

MBN) but its non-zero off-diagonal elements are sparse

and negligibly small. The diagonal elements of Sa are also

negligibly small outside the centre diagonal segment, as

shown by the magnified structure of Sa in Fig. 4b. Using

eq. (2), the diagonal part of Sa can be easily calculated
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Fig. 4. (a) Full-matrix structure of Sa. (b) Magnified structure of Sa. The coloured contours plot the element value in m2s�2.
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from S and C. The analysis error power spectrum Sa(ki)

given by the diagonal part of Sa is plotted by the green�signs

in Fig. 3, while the green curve, denoted by Sa(k), plots the

continuous counterpart of Sa(ki) obtained in the limit of

Dk � 2p/D00 (or D0� with fixed Dx). As shown by the

green�signs in comparison with the red�signs plotted for

S(ki) in Fig. 3, the error power spectrum is reduced by the

first-step analysis dramatically for the first few wave

numbers (from ki�0 to jkij�2Dk), but the reduction

decreases rapidly and becomes negligibly small as jkij
increases to 6Dk and beyond. The analysis error correlation

function Ca(x) calculated from Sa(ki) by eq. (3) is plotted by

the dashed green curve in Fig. 2. By comparing this green

curve with the red curve in Fig. 2, the error correlation

function is narrowed and thus the de-correlation length is

reduced significantly when Cb(x) is updated by Ca(x). This

is simply because the background errors are reduced mostly

in long-wave structures as shown by the change of error

power spectrum from S(ki) to Sa(ki) in Fig. 3.

Note that Bdd
T��HBH

T�R, where B( )� denotes

the expectation of ( ). Using this and eqs. (1) and (2), we

obtain

BðFNDaÞðFNDaÞH >¼ FN BDaDaT > FH
N

¼ FN ½BHTðHBHT þ RÞ�1BddT > ðHBHT þ RÞ�1HB�FH
N

¼ FNðB� AÞFH
N ¼ S� Sa:

(8)

This implies that the power spectrum of the first-step

analysis increment (as a spatially correlated random field)

can be estimated by S(ki)�Sa(ki) in Fig. 3, which shows

statistically that the first-step analysis increment contains

mainly long-wave structure as a correction to the back-

ground field, while short-wave errors are left mostly

unchanged. The correctable amounts of short-wave errors

by the second-step analysis in the nested domain can be

estimated statistically by the power spectrum of the second-

step analysis increment in the form of Sa1(ki?)�Sa2(ki?),
where ki?�iDk? is the ith discrete wavenumber and Dk? �
2p/D? (�Dk) is the minimum resolvable wavenumber

associated with the nested domain of length D?, Sa1(ki?) is
the power spectrum of the first-step analysis, that is, Sa(ki)

projected in the wavenumber space of {ki?}, and Sa2(ki?) is
the power spectrum of the second-step analysis estimated

similarly by using eq. (2) but in the space of {ki?}, with S(ki)

replaced by Sa1(ki?). Note that Sa1(ki?) - Sa2(ki?)BSa1(ki?)
and Sa1(ki?) is bounded by Sa(ki), so the power spectrum of

the second-step analysis increment is bounded below Sa(ki)

and its detailed evaluation is omitted in this paper.

Figure 5a shows the structure of the benchmark A that is

precisely computed [either from A�FN
H
SaFN or from eq.

(1b) by inverting HBH
T�R in the space of the periodically

extended coarse-resolution innovations within the ex-

tended domain of �D/2�3L5x5D/2�3L]. The structure

of approximately calculated A by Aij�se
2Ca(xi�xj) accord-

ing to eq. (3) is largely the same as that shown for the

benchmark A in Fig. 5a except that all the contour lines

become exactly straight (not shown). Figure 5b shows that

the deviation of the approximately calculated A from the

benchmark A is very small (within 90.012m2s�2) and

the deviation reaches a local maximum of 0.0116m2s�2

(or minimum of �0.0115m2s�2) at the point marked by

the �(or �) sign on the diagonal line. Note that the

diagonal point marked by the �(or �) sign in Fig. 5b

corresponds to a grid point that is collocated with a coarse-

resolution innovation (or located in the middle between

two adjacent coarse-resolution innovations). At such a grid

point, the analysis error variance given by the diagonal

element of the benchmark A is maximally (or minimally)

reduced to 3.541 (or 3.565)m2s�2, while the diagonal

elements of the approximately calculated A all have the

same constant value of se
2�3.553m2s�2, and this constant

value accurately captures the true domain averaged analy-

sis error variance (�3.553m2s�2) given by the mean of the

diagonal elements of the benchmark A. The correlation

structure (not shown) intercepted from the benchmark A in

Fig. 5a across the diagonal point marked by the�(or �)

sign in Fig. 5b is almost the same as the approximately

calculated analysis error correlation potted by the dotted

blue curve in Fig. 2, and the difference is extremely small,

confined between �0.0022 and 0.0028 (or �0.0006 and

0.0065).

The single-step-analysed increment produced by SE with

20 iterations is denoted by Da20 and plotted by the dashed

red curve in Fig. 1. This curve is not very close to the solid

black curve plotted for the benchmark analysis increment,

denoted by Da, in Fig. 1. The error of Da20, evaluated by

e20�Da20�Da, is shown by the dashed red curve in Fig. 6,

and the domain averaged RMS value of e20 is 0.883ms�1

as listed in the first row of Table 1. The solid green curve

in Fig. 1 shows the analysis increment produced by the

first step (of TEA, TEB, or TEC) with 20 iterations, and

this first-step increment is denoted by DaI-20. As DaI-20
is produced by analysing only the 20 coarse-resolution

innovations, the dashed green curve is not very close to the

black benchmark curve, and its domain averaged RMS

error with respect to the black benchmark curve in Fig. 1 is

0.713ms�1, as listed in the second row of Table 1.

However, DaI-20 is close to its own benchmark analysis

increment, denoted by DaI (not shown) and obtained

directly from eq. (1a) for the coarse-resolution innovations

only. The domain averaged RMS error of DaI-20 with

respect to DaI is 0.321ms�1 as listed in the third row of

Table 1.

The dashed blue, dotted cyan and dot-dashed grey curves

in Fig. 1 show the two-step-analysed increments denoted by

8 Q. XU ET AL.
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Fig. 5. (a) Structure of benchmark A plotted by colour contours every 0.5m2s�2. (b) Deviation of approximately calculated A from
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DaA20, DaB20 and DaC20 and produced by TEA, TEB and

TEC, respectively, with 20 iterations. The dashed blue

curve from TEA is very close to the black benchmark

curve, but the dotted cyan curve from TEB and dot-

dashed grey curve from TEC are not close to the bench-

mark curve. Their errors, evaluated by eA20�DaA20�Da,
eB20�DaB20�Da and eC20�DaC20�Da are plotted by the

dashed blue, dot-dashed cyan and grey curves in Fig. 6,

respectively. Their domain averaged RMS errors are 0.316,

0.806 and 0.661ms�1, respectively, as listed in the last three

rows of the first column in Table 1. As shown, with 20

iterations, the analysis from SE is much less accurate than

that from TEA, slightly less accurate than that from TEB,

and moderately less accurate than that from TEC.

When the iteration number, denoted by n, increases from

20 to 50, the analysis errors decrease by 3.1 times in SE, 3.8

times in TEA, 1.9 times in TEB and by 1.6 times in TEC, as

shown in the second column of Table 1. In this case, the

analysis from SE becomes more accurate than those from

TEB and TEC but is still much less accurate than that from

TEA. When n increases from 50 to 100, the analysis errors

further decrease by 3.2 times in SE and by 4.9 times in

TEA, but they no longer decrease in TEB and TEC, as

shown in the third column of Table 1. In this case, the

analysis error from TEA, denoted by eA100, is very small

over the entire analysis domain, as shown by the solid blue

curve in Fig. 6, while the analysis error from SE, denoted

by e100, is very small only inside the nested domain but not

so outside the nested domain as shown by the solid red

curve in Fig. 6. When n increases beyond 100, the iterative

procedure in SE converges slowly and reaches the final

convergence at n�309 with the RMS error finally reduced

to 0.019ms�1, while the iterative procedure in TEA con-

verges quickly and reaches the final convergence at n�141
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Fig. 6. Analysis error e20 (or e100) from SE with 20 (or 100) iterations plotted by dashed (or solid) red curve, analysis error eA20 (or eA100)

from TEA with 20 (or 100) iterations plotted by dashed (or solid) blue curve, and analysis error eB20 (or eC20) from TEB (or TEC) with

20 iterations plotted by dot-dashed cyan (or grey) curve.

Table 1. Entire-domain averaged RMS errors (in ms�1) for the

analysis increments obtained from SE, Step-I, TEA, TEB and TEC

applied to the first set of innovations with periodic extension and

consecutively increased n, where n is the number of iterations and

Step-I stands for the first-step analysis (in TEA, TEB or TEC). All

the RMS errors are evaluated with respect to the benchmark

analysis increment Da except for those in the third row where the

RMS errors are evaluated versus DaI � the benchmark for the first-

step analysis itself, obtained directly from eq. (1a) for the coarse-

resolution innovations only

Experiment n�20 n�50 n�100 Final

SE 0.883 0.286 0.090 0.019 at n�309

Step-I 0.713 0.588 0.596 0.599 at n�178

Step-I vs. DaI 0.321 0.081 0.018 0.007 at n�178

TEA 0.316 0.084 0.017 0.008 at n�141

TEB 0.806 0.417 0.530 0.568 at n�178

TEC 0.661 0.402 0.420 0.428 at n�121

10 Q. XU ET AL.



with the RMS error finally reduced to 0.007ms�1 which is

slightly smaller than the final RMS error from SE, as

shown in the last column of Table 1.

3.3. Results for the second set of innovations with

periodic extension

As the coarse-resolution innovations are non-uniformly

distributed in the second set, the benchmark A can no

longer be computed from A�FN
HSaFN but still can be

precisely computed from eq. (1b). The structure of this

benchmark A is shown in Fig. 7a. As shown, the contour

lines are still largely diagonal-parallel but contain irregular

variations with M local minima corresponding to the M

non-uniformly distributed coarse-resolution innovations.

The approximately calculated A is the same as that for

the uniformly distributed coarse-resolution innovations. The

deviation of the approximately calculated A from the

benchmark A in Fig. 7a is no longer very small as shown

in Fig. 7b, and the deviation reaches the maximum of

0.639m2s�2 (or minimum of �1.131m2s�2) at the point

marked by the �(or �) sign on the diagonal line in Fig. 7b.

The approximately calculated se
2 (�3.553m2s�2) is no

longer equal to but still very close to the domain averaged

analysis error variance (�3.634m2s�2) given by the mean

of the diagonal elements of the benchmark A in Fig. 7a.

The correlation structure intercepted from the bench-

mark A in Fig. 7a across the diagonal point marked by the

�(or �) sign in Fig. 7b is denoted by Ca�(x) [or Ca� (x)]

and plotted by the dotted green (or purple) curve in Fig. 8.

As shown, the dotted green (or purple) curve is slightly

wider (or narrower) than the dotted blue curve for the

approximately calculated analysis error correlation that is

the same as that in Fig. 2. The difference between the

dotted green (or purple) curve and the dotted blue curve is

confined between �0.08 and 0.001 (or �0.001 and 0.04).

The above results show that the approximately calcu-

lated A is still good approximation of the benchmark A.

Because of this, the results obtained from the second set of

innovations are qualitatively the same as those obtained for

the first set of innovations in the previous subsection.

In particular, as shown in Figs. 9 and 10 and Table 2, with

20 iterations, the analysis increment Da20 from SE is still

less accurate than both DaB20 from TEB and DaC20 from

TEC, and is much less accurate than DaA20 from TEA.

When the iteration number n increases from 20 to 50 and

then to 100, the analysis from SE gradually becomes more

accurate than those from TEB and TEC but is still much

less accurate than that from TEA. When n increases

beyond 100, the iterative procedure reaches the final

convergence at n�324 in SE with the RMS error finally

reduced to 0.029ms�1, and the iterative procedure reaches

the final convergence at n�135 in TEA with the RMS

error finally reduced to 0.039ms�1, which is slightly larger

than the final RMS error from SE, as shown in the last

column of Table 2.

3.4. Results for the second set of innovations without

periodic extension

In the previous two subsections, the innovations and

analysis increments are extended periodically with the

analysis domain. The periodic extension is used to facilitate

the derivation of the spectral formulation in eq. (2) for

efficiently calculating se
2Ca(x) in eq. (3). But the calculated

se
2Ca(x) can be modified and applied to the two-step

analysis without periodic extension as explained below.

As shown by the dotted blue curve in Fig. 2, Ca(x) becomes

almost zero as jxj increases to 3L (�30 km�3�41.67Dx)
and beyond (but within the primary period defined by

jxj5D/2). Thus, once se
2Ca(x) is approximately calculated

from Sa(ki) as a periodic function according to eq. (3),

it can be modified simply by setting Ca(x) to zero for

jxj�D/2. This modified se
2Ca(x) can be used to update the

background error covariance in the second step without

periodic extension as long as D/2]3L. [Note that, if

D/2B3L, se
2Ca(x) can be calculated from Sa(ki) by ima-

ginarily increasing N, say, to N? with D?�N?Dx�6L in

eq. (3), so the calculated se
2Ca(x) can be modified by letting

Ca(x) goes zero for jxj�D?/2.]
With the above-modified se

2Ca(x), the two-step experi-

ments (TEA, TEB and TEC) are performed in this

subsection by using the second set of innovations without

periodic extension. The SE and the benchmark analysis are

Table 2. As in Table 1 but for the second set of innovations with

periodic extension

Experiment n�20 n�50 n�100 Final

SE 0.865 0.264 0.112 0.029 at n�324

Step-I 0.509 0.405 0.419 0.423 at n�135

Step-I vs. DaI 0.250 0.064 0.022 0.008 at n�135

TEA 0.246 0.072 0.033 0.039 at n�120

TEB 0.581 0.229 0.303 0.351 at n�103

TEC 0.498 0.293 0.316 0.323 at n�118

Table 3. As in Table 2 but without periodic extension

Experiment n�20 n�50 n�100 Final

SE 0.753 0.267 0.127 0.017 at n�324

Step-I 0.558 0.435 0.415 0.422 at n�135

Step-I vs. DaI 0.320 0.125 0.029 0.010 at n�135

TEA 0.305 0.128 0.049 0.029 at n�136

TEB 0.602 0.263 0.350 0.354 at n�121

TEC 0.524 0.315 0.331 0.322 at n�118
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Fig. 7. As in Fig. 5 but for the non-uniform coarse-resolution innovations in the second set. The contours in (a) are plotted every
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also performed without periodic extension. In this case, the

benchmark A is computed from eq. (1b) for the original M

coarse-resolution innovations without periodic extension.

As shown in Fig. 11a, this benchmark A has the same

structure as that in Fig. 7a in most areas except for those

around the four corners, and the differences around the

four corners are caused by the removal of periodic extension.

When A is calculated approximately by using the above

modified se
2Ca(x), it has zero value for the elements at

and around the two off-diagonal corners, and its deviation

from the benchmark A in Fig. 11a is shown in Fig. 11b.

As shown, the deviation is near zero at and around the two

off-diagonal corners but becomes large at and near the

two diagonal corners. The large deviations around the two

diagonal corners, however, have little impact on the

second-step analysis in TEA because their associated grid

points are not only outside but also distant away from

the nested domain beyond the effective correlation range

(:10 km, as shown by the dotted blue curve in Fig. 2).

With the two diagonal corner areas excluded, the deviation

in Fig. 11b has essentially the same structure as that in

Fig. 7b. This implies that the above approximately calcula-

ted A is still a good approximation of the benchmark A in

Fig. 11a. Therefore, as shown in Fig. 12 and Table 3, the

results obtained without periodic extension are qualita-

tively the same as those obtained with periodic extension in

the previous subsection.
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Fig. 8. As in Fig. 2 but for the second set of innovations. The
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4. Numerical experiments for two-dimensional

cases

4.1. Description of data and experiments

For the two-dimensional experiments performed in this

section, the observational data and model-produced back-

ground field are taken from the same sources as those cited

in Section 3.1 except for the following treatments. First,

the two-dimensional analysis domain size is set to Dx�
NxDx�120 km and Dy�NyDy�60 km, respectively, with

Nx�120, Ny�60 and Dx�Dy�1 km. Second, innova-

tions are generated in two sets. In the first (or second) set,

the coarse-resolution innovations are generated by sub-

tracting the background values from interpolated observa-

tions at M (� Mx�My�20�10�200) points distributed

uniformly (or non-uniformly) over the analysis domain as

shown by the red�signs in Fig. 13a (or 13b), while the

high-resolution observation innovations are generated by

subtracting the background values from the original obser-

vations at M? (�68) observational points, marked by the

green dots in Fig. 13a (or 13b), in the nested domain of Dx/

6�20 km long and Dy/6�10 km wide (see the rectangle

plotted by the thin black lines in Figs. 16 and 17 or 20). The

high-resolution innovations are spaced every 1.2 km in the

radial direction along each radar beam, and the radar

beams are spaced every 1.68 in the azimuthal direction.

The background and observation error variances are

set to sb
2�52m2s�2 and so

2�2.52m2s�2, respectively, as in

Section 3.1. The background error correlation function

Cb(x) is modelled by the same double-Gaussian form as in

eq. (5) except that x2 is replaced by jxj2 and L�10Dx
(�10 km). The periodic extension of Cb(x) can be made in

the x and y directions for each Gaussian function in the

same way as shown in (17c) of Xu and Wei (2011).

The periodically extended Cb(x) is not exactly but nearly

isotropic (not shown). By applying the DFT to the

periodically extended sb
2Cb(x, y), the background error

power spectrum can be calculated in the discrete form of

S(ki, kj). For the double-Gaussian form of Cb(x), S(ki, kj)

can be also derived analytically (not shown) as a two-

dimensional extension of eq. (6) [see (17)�(18) of Xu and

Wei, 2011]. Similar to the one-dimensional case discussed

in Section 3.2, S(ki, kj) approaches its continuous counter-

part S(k)�S(kx, ky) in the limit of Dkx�2p/Dx00 and

Dky�2p/Dy00, where k�(kx, ky) is the two-dimensional

wavenumber. The diagonal matrix S can be constructed
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Fig. 10. As in Fig. 6 but for the second set of innovations.
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from S(ki, kj) by converting the double indices (i, j) into a

single index and then placing the NxNy elements of S(ki, kj)

along the diagonal of S.

The observation errors are assumed to be spatially

uncorrelated, so R�so
2I in the innovation space (without

periodic extension). For each set of innovations, the
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Fig. 11. As in Fig. 7 but without periodic extension. The contours in (b) are plotted at 90.2, 90.5, 91, 93, �5 and �7m2s�2.
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benchmark analysis is again computed directly and pre-

cisely from eq. (1a), while the single-step analysis in SE is

obtained, with a limited number of iterations, by mini-

mising the same form of cost-function as in eq. (7) but

formulated for the two-dimensional case. Three types

of two-step experiments are designed and named similarly

to those for the one-dimensional case in Section 3. They

are (1) TEA in which the ijth element of B is updated to

se
2Ca(xi � xj) from eq. (4) in the second step, (2) TEB

in which B is not updated and (3) TEB in which the

ijth element of B is updated to se
2Cb(xi�xj) in the second

step.

4.2. Results for the first set of innovations without

periodic extension

When the uniformly distributed coarse-resolution innova-

tions from the first set are analysed in the first step without

periodical extension, S can be updated to Sa approximately

according to the two-dimensional spectral form of eq. (2),

as explained in Section 2.3. Again, becauseMBN, Sa is not

diagonal, but its non-zero off-diagonal elements are sparse

and negligibly small, and this feature (not shown) is similar

to the one-dimensional case in Fig. 4a. Thus, the diagonal

part of Sa gives the analysis error power spectrum Sa(ki, kj)

approximately. The analysis error covariance function

se
2Ca(x) can be calculated from Sa(ki, kj) according to eq.

(4) and then modified by setting Ca(x) to zero for jxj�Dx/2

or jyj�Dy/2 (for the same reason as explained in Section

3.4). The calculated Ca(x�xc) is shown by the green

contours for xc�(0, 0) in Fig. 14, where xc denotes the

correlation centre and the analysis domain is centred

at x�(0, 0). The benchmark A is computed from eq. (1b)

by inverting HBHT�R without periodic extension. The

benchmark correlation pattern is plotted by the black

contours also for xc�(0, 0) in Fig. 14, and this correlation

pattern corresponds to the central column (or row) of the

benchmark A normalised by its diagonal element. As

shown, the approximately calculated Ca(x) matches the

benchmark correlation closely for all the non-zero con-

tours. Similar close matches are seen when xc is moved

away from the domain centre but still within the interior

domain with its distance from the domain boundaries

larger than the effective correlation range (:10 km)
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Fig. 12. As in Fig. 10 but without periodic extension.
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defined by the radius of the first zero-contour circle of

Ca(x) in Fig. 14.

The N (�NxNy) diagonal elements of the benchmark A

give the analysis error variances at the NxxNy grid points

over the analysis domain. The approximately calculated

analysis error variance is se
2�3.153m2s�2, and its devia-

tion from the benchmark analysis error variance is plotted

by coloured contours in Fig. 15. As shown, the deviation

is very small and confined between 90.075m2s�2 over

the interior domain that covers the nested domain. The

benchmark analysis error variances have an averaged

value of 3.150m2s�2 over the interior domain, and this

averaged value is closely matched by se
2 (�3.153m2s�2).

Towards the domain boundaries within the effective

correlation range (:10 km), the deviation drops rapidly

below �0.1m2s�2 as shown in Fig. 15, and this rapid
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Fig. 13. (a) Uniformly distributed coarse-resolution innovation points plotted by red�signs over the analysis domain, and high-

resolution innovation points plotted by the green dots in the nested domain of Dx/6�20 km long and Dy/6�10 km wide. (b) As in (a) but

for the second set in which the coarse-resolution innovations are not uniformly distributed. The coarse-resolution innovations in (a) are

spaced every Dxco�6 km (or Dyco�6 km) in the x-direction (or y-direction). The domain-averaged resolution for the non-uniformly

distributed coarse-resolution innovations in (b) is estimated also by Dxco : 6 km (or Dyco : 6 km) in the x-direction (or y-direction).
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drop corresponds to the rapid increase in the benchmark

analysis error variance caused by the absence of coarse-

resolution innovation outside the analysis domain. The

large negative deviations around the domain boundaries,

however, have little impact on the second-step analysis

in TEA because their associated grid points are not

only outside but also distant away from the nested domain

beyond the above defined effective correlation range.

Thus, the above approximately calculated A is a good

approximation of the benchmark A for the second-step

analysis.

The analysis increment from SE applied to the first set of

innovations with 20 iterations is denoted by Da20 and

plotted by the red contours in Fig. 16 in comparison with

–30

–20

–10

 0

 10

 20

 30

–60 –40 –20  0  20  40  60

x (km)

y 
(k

m
)

Fig. 14. Ca(x�xc) plotted by the green contours for xc�(0, 0), and benchmark correlation pattern plotted by the black contours with xc

also placed at x�(0, 0) � the centre of the analysis domain. Here, xc denotes the correlation centre.
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Fig. 15. Deviation of se
2 (� 3.1527m2s�2) from benchmark analysis error variance plotted by contours at 0,90.05, �0.1, �0.2, �0.5,

�1, �3 and �5m2s�2 over the analysis domain.
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the black contours for the benchmark analysis increment,

denoted by Da. As shown, the red contours of Da20 match

the benchmark black contours not as closely as the blue

contours of DaA20 � the analysis increment from TEA,

especially in the nested domain. The error of Da20,
evaluated by e20�Da20�Da, is shown by the red contours

in Fig. 17 in comparison with the blue contours for the

error of DaA20, evaluated by eA20�DaA20�Da. As shown,

e20 is both positively and negatively larger than eA20 in the

nested domain, where the positive (or negative) maxi-

mum of e20 is 2.90 (or �1.66)ms�1 while the positive

(or negative) maximum of eA20 is 0.84 (or �0.84)ms�1.
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Fig. 16. Benchmark analysis increment Da plotted by black contours, analysis increment Da20 from SE with 20 iterations plotted by red

contours, and analysis increment DaA20 from TEA with 20 iterations plotted by blue contours. The rectangle plotted by thin black lines

shows the nested domain.
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Fig. 17. Analysis error e20 from SE and analysis error eA20 from TEA with 20 iterations plotted by red and blue contours, respectively.

The rectangle plotted by thin black lines shows the nested domain.
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The nested-domain averaged RMS error is 1.11ms�1 in SE

but is only 0.32ms�1 in TEA. The entire-domain aver-

aged RMS error from SE is significantly larger than that

from TEA, slightly large than that from TEC, but smaller

than that from TEB, as shown in the first column of

Table 4.

When the iteration number n increases from 20 to 50, the

analysis from SE becomes more accurate than that from

TEC but is still less accurate than that from TEA as shown

in the second column of Table 4. When n increases from

50 to 100, the analysis from SE is also still less accurate

than that from TEA, as shown in the third column of

Table 4. The iterative procedure in TEA reaches the final

convergence at n�81 with the RMS error finally re-

duced to 0.059ms�1, while the iterative procedure in SE

reaches the final convergence at n�312 with the RMS

error finally reduced to 0.043ms�1, which is smaller than

the final RMS error from TEA, as shown in the last

column of Table 4.

4.3. Results for the second set of innovations without

periodic extension

When the non-uniformly distributed coarse-resolution

innovations from the second set are analysed in the first

step without periodical extension, the analysis error

covariance function se
2Ca(x) can still be calculated approxi-

mately from Sa(ki, kj) according to eq. (4) and then

modified in the same way as in the previous subsection,

and Aij�se
2Ca(xi�xj) gives the ijth element of A approxi-

mately. The calculated Ca(x�xc) is re-plotted by the green

contours for xc�(0, 0) in Fig. 18, which is the same as that

in Fig. 14. However, the benchmark A computed from

eq. (1b) with the non-uniformly distributed coarse-resolution

innovations becomes different from that in the previous

subsection, and so do the benchmark analysis error

variances (given by the diagonal elements of the bench-

mark A at the Nx�Ny grid points). The benchmark

correlation pattern is shown by the black contours for

xc�(0, 0) in Fig. 18, which corresponds to the central

column (or row) of the benchmark A normalised by its

diagonal element. As shown, the approximately calculated

Ca(x) still loosely matches the benchmark correlation for

all the non-zero contours. Similar matches are seen for

xc"(0, 0) but still within the interior domain.

The calculated analysis error variance is still se
2�

3.153m2s�2 as in the previous subsection, and its deviation

from the benchmark analysis error variance is shown by the

colour contours in Fig. 19. As shown, the deviation is no

longer small but is mostly between �2 and 1m2s�2 within

Table 4. As in Table 3 but for the first set of innovations in the

two-dimensional case as shown in Fig. 13a

Experiment n�20 n�50 n�100 Final

SE 0.694 0.380 0.176 0.043 at n�312

Step-I 0.727 0.636 0.589 0.588 at n�219

Step-I vs. DaI 0.393 0.194 0.094 0.030 at n�219

TEA 0.388 0.199 0.104 0.059 at n�81

TEB 1.371 0.780 0.698 0.632 at n�242

TEC 0.615 0.500 0.443 0.448 at n�121
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Fig. 18. As in Fig. 14 but for the second set of innovations.
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and around the nested domain. The benchmark analy-

sis error variances have an averaged value of 3.77m2s�2

over the nested domain, and this averaged value is much

better matched by se
2 (�3.153m2s�2) than the back-

ground error variance sb
2 (�25m2s�2). Large deviations

are seen near the domain boundaries in Fig. 19, but they

have little impact on the second-step analysis in TEA for

the same reason as explained in the previous subsection.

Thus, the above estimated A is still a reasonably good

approximation of the benchmark A for the second-step

analysis.

The analysis increment from SE (or TEA) applied to the

second set of innovations with 20 iterations is denoted

again by Da20 (or DaA20) and the benchmark analysis

increment is denoted by Da. The error of Da20, evaluated by

e20�Da20�Da, is plotted by the red contours in Fig. 20 in
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Fig. 19. As in Fig. 15 but for the second set of innovations with contours plotted every 1m2s�2.
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Fig. 20. As in Fig. 17 for the second set of innovations.
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comparison with the blue contours for eA20�DaA20�Da.
As shown, e20 is both positively and negatively larger than

eA20 in the nested domain, where the positive (or negative)

maximum of e20 is 2.59 (or �2.02)ms�1 but the positive

(or negative) maximum of eA20 is 0.76 (or �1.08)ms�1.

The nested-domain averaged RMS error is 1.05ms�1 in SE

but is only 0.39ms�1 in TEA. The entire-domain averaged

RMS errors are listed in the first column of Table 5, and

they are similar to those in the first column of Table 4.

When the iteration number n increases from 20 to 50 and

then to 100, the results are similar to those obtained in the

previous subsection as shown in the second and third

columns of Table 5 in comparison with those in Table 4. As

shown in the last column of Table 5, the iterative procedure

in TEA converges at n�59 with the RMS error finally

reduced to 0.111ms�1, while the iterative procedure in SE

converges at n�237 with the RMS error finally reduced to

0.064ms�1. These results are also similar to those listed in

the last column of Table 4.

4.4. Results and discussion on computational

efficiency

As explained at the end of Section 3.2, the second step in

the two-step analysis is performed in a nested domain with

a much reduced control vector dimension. As a result, the

second-step analysis takes much less computational time

(measured by CPU � Computer’s central processing unit)

than the first-step analysis. In particular, with n�20 for

the two-dimensional case presented in this subsection, the

second-step analysis takes merely 0.16 s of CPU time while

the first-step analysis takes 105.90 s. The CPU time for the

single-step analysis in SE is 108.20 s. In the two-step

analysis, the analysis error covariance function is calculated

approximately and very efficiently, and therefore, its

required CPU time is relatively small (merely 6.32 s for

the two-dimensional cases presented in this section). For

real-time applications, the analysis error covariance func-

tion can always be pre-calculated and thus will not cost any

CPU time in real-time run. Thus, with the same number

of iterations, the two-step analysis costs no more CPU

time than the single-step analysis. Moreover, as shown

in Table 5, the two-step analysis converges much faster

than the single-step analysis. Therefore, to reach the same

accuracy, the computational cost for the two-step analysis

should be much smaller than that for the single-step

analysis.

Furthermore, since the first step in the two-step analysis

analyses only the coarse-resolution observations, the grid

resolution can be properly coarsened in the first step with

no loss of information content from the coarse-resolution

observations and thus no loss of analysis accuracy (see

Section 4 of Xu, 2011), while the original high-resolution

grid (used by the single-step analysis to cover the entire

domain) is reduced to cover only the nested domain for the

control vector cII in the second step of the two-step analysis

(as explained at the end of Section 3.1). For example, when

the grid resolution is coarsened to Dx�Dy�2 km in the

first step for the two-dimensional case in this subsection,

the RMS error (� 0.407ms�1) of the first-step analysis

with n �20 is very close to the value of 0.406ms�1 listed

for Dx�Dy�1 km in the third row of Table 5, but the

required CPU time is reduced sharply from 105.90 to 7.18 s.

In this particular case, the two-step analysis with n�20

costs only 8.34 s of CPU time which is much smaller than

the CPU time (108.20 s) required by the single-step analysis

with the same n �20. Such a two-grid approach can make

the two-step analysis not only much more efficient but also

substantially more accurate than the single-step analysis

with the same limited number of iterations.

5. Summary and conclusion

In this study, a two-step variational method is designed to

analyse broadly distributed coarse-resolution observations

and locally distributed high-resolution observations in two

separate steps. As the analysed field obtained with coarse-

resolution observations in the first step is used as the

updated background field for assimilating high-resolution

observations in the second step, the background error

covariance should be also updated in the second step by the

analysis error covariance from the first step. Due to the fact

that the analysis error covariance matrix is too large to

directly and precisely compute [see eq. (1b)] in operational

data assimilation, how to objectively estimate or efficiently

compute the analysis error covariance in the first step for

updating the background error covariance in the second (or

any subsequent) step becomes the first challenging issue

encountered in the two-step (or any multistep) variational

method. This issue is very important for multiscale and mul-

tistep variational analyses but has been largely ignored or

avoided by previous studies as reviewed in the introduction.

To attack this issue, a new approach is proposed in which

spectral formulations are derived and simplified to approxi-

mately and very efficiently calculate the analysis error

Table 5. As in Table 4 but for the second set of innovations as

shown in Fig. 13b

Experiment n�20 n�50 n�100 Final

SE 0.653 0.341 0.177 0.064 at n�237

Step-I 0.756 0.661 0.622 0.616 at n�201

Step-I vs. DaI 0.406 0.210 0.088 0.042 at n�201

TEA 0.416 0.220 0.130 0.111 at n�59

TEB 1.151 0.800 0.791 0.712 at n�229

TEC 0.601 0.456 0.434 0.427 at n�135
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covariance functions [see eqs. (2�4) and the Appendix].

Verified against their respective benchmark truths, the

calculated analysis error covariance functions are shown

to be very good approximations for uniformly distri-

buted coarse-resolution observations (see Fig. 5 for a

one-dimensional case and Figs. 14 and 15 for a two-

dimensional case) and fairly good approximations for non-

uniformly distributed coarse-resolution observations (see

Figs. 7 and 11 for one-dimensional cases and Figs. 18 and

19 for a two-dimensional case), at least, over the nested

domain and surrounding areas within the analysis

domain.

Having the above first issue addressed, the next important

question is whether and under what conditions the above

calculated analysis error covariance function can make the

two-step analysis more accurate than the conventional

single-step analysis. To answer this question, numerical

experiments are performed for idealised one- and two-

dimensional cases to compare the two-step analyses with

their respective counterpart single-step analyses with various

limited numbers of iterations (to mimic the computationally

constrained situations in operational data assimilation).

In each set of these experiments, the background error

covariance is assumed exactly known and accurately mod-

elled for the single-step analysis, so the optimal analysis can

be precisely computed and used as a benchmark to evaluate

the accuracy of the single-step analysis versus its coun-

terpart two-step analysis. The major findings are sum-

marised below:

(1) By using the approximately calculated analysis error

covariance function to update the background error

covariance in the second step, the two-step analysis

(performed in the two-step experiment named TEA)

can be significantly more accurate than the single-

step analysis (performed in the control experiment

named SE) as long as the iteration number is not

sufficiently large. Only when the iteration number

becomes so large that the single-step analysis reaches

the final convergence or nearly so, the single-step

analysis can become slightly more accurate than the

two-step analysis (as shown by the results from TEA

versus those from SE in Tables 1�5).
(2) If the background error covariance is not updated

(or only the background error variance is updated)

in the second step, then the two-step analysis can

be as accurate as (or slightly more accurate than)

the single-step analysis only if the iteration number

is severely limited to a fraction of the total number

of iterations needed for the final convergence of

the single-step analysis [as shown by the results

from TEB (or TEC) versus those from SE in

Tables 1�5].

(3) The two-step analysis (in TEA) converges much

faster and thus costs much less computational time

than the single-step analysis to reach the same

accuracy. Furthermore, since the first step in the

two-step analysis analyses only the coarse-resolution

observations, the grid resolution can be properly

coarsened in the first step with the original high-

resolution grid used only over the nested domain in

the second step. With this two-grid approach, the

two-step analysis (in TEA) can be not only more

accurate but also much more efficient than the

single-step analysis with the same limited number

of iterations.

In our idealised experiments, the coarse-resolution obser-

vations are sparsely taken from the same source as the

high-resolution observations, so their error variance is the

same as that (so
2:2.52m2s�2) for the high-resolution

observations but much smaller than that (so
2:42m2s�2)

estimated for operational radiosonde wind observations

(see Fig. 5 of Xu and Wei, 2001). To accurately represent

the latter case, computer-generated uncorrelated Gaussian

random numbers are used to simulate coarse-resolution

(or high-resolution) observation errors with so�4ms�1

(or so�2.5ms�1) and produce their associated coarse-

resolution (or high-resolution) innovations by subtracting

computer-generated spatially-correlated Gaussian random

background errors [with sb�5ms�1 and Cb(x) modelled

by eq. (5)]. Additional experiments are performed with

these simulated innovations and the results (not shown) are

qualitatively the same as those presented in this paper.

Thus, the major findings summarised above are sufficiently

robust (for different settings of observation error variance

and background error covariance and for different sam-

plings of various innovations).

The two-step analysis is proposed in this paper primarily

for variational data assimilation with coarse-resolution

observations broadly distributed over the entire model

domain and high-resolution observations locally distribu-

ted in a nested domain, but it can be also extended and

applied to situations in which both coarse and high-

resolution observations are present throughout the entire

model domain and analysed separately in two steps. In

this case, the two-step analysis still can be more accurate

and computationally more efficient than the single-step

analysis as long as the iteration number is not sufficiently

large for the single-step analysis and the iteration number

is properly further reduced for the two-step analysis

(to gain extra computational efficiency, especially if the

first step is performed on a properly coarsened grid as

explained earlier). For such an extended application,

according to our additional experiments (not presented

in this paper), the performance gain of the two-step
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analysis over the single-step analysis is reduced but still

significant.

As mentioned in the introduction, double Gaussians

have been used to model the background error correlation

in variational data assimilation at NCEP with each

Gaussian computed separately by the recursive filter (Wu

et al., 2002; Purser et al., 2003). When such a recursive filter

is used in a two-step variational analysis, using a single

Gaussian to model the background error correlation in

each step can reduce the computational cost. The true

background error correlation, however, may not be ade-

quately modelled by a single Gaussian. In this case, the

spectral formulation derived in this paper should be

modified to consider the inaccuracy of the background

error correlation modelled by the single-Gaussian. Such a

modification is under our investigation.

The two-dimensional spectral formulations derived in

this paper can be extended and used to efficiently calculate

the error covariance functions in the three-dimensional

space for univariate analyses of sparsely spaced vertical

profiles of observations, such as operational radiosondes or

vertical profiles of horizontal winds produced by the

velocity-azimuth display method from radar radial-velocity

measurements. For those data, we may assume that the

error correlation structure in the vertical direction is not

much affected by the analysis, so we only need to update

the error variance and horizontal correlation structure

on each and every vertical level essentially in the same

way as shown for the two-dimensional cases in Section 4.

Such an extension will be explored with the real-time

variational data assimilation system of Gao et al. (2013),

in which the analyses are all univariate and performed

in two steps. The two-dimensional spectral formula-

tions can be also extended for multivariate analyses

and applied to the multistep radar wind analysis system

of Xu et al. (2015). Such an extension is currently being

developed and the results will be presented in a follow-up

paper.
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7. Appendix

Algorithms for calculating the diagonal part of Sa

1. One-dimensional case

For MBN in the one-dimensional case, as shown in (25) of

Xu (2011), the ith diagonal element of P�PMNSPMN
T is

given by

Pi ¼
XLþ

l¼L�

SiþlM for M� � i �Mþ and N� � i þ lM � Nþ;

(A1)

where N��Int[(1�N)/2], N��Int[N/2], M��

Int[(1�M)/2]), M��Int[M/2], L��Int[(N��M�)/M],

L��Int[(N��M�)/M], and Si�lM denotes the (i�lM)th

diagonal element of S. Using eq. (A1), P can be easily

calculated from S by the following algorithm:

Do n�N�, . . . N�

if n50 then

l�Int[(n�M�)/M]

otherwise

l�Int[(n�M�)/M]

endif

i�n�lM

Pi�Pi�Sn

enddo

In the above algorithm, Int[ ] denotes the integer part of [ ].

After this, the diagonal part of Sa, with its ith diagonal

element denoted by (Sa)i, can be easily calculated by the

following algorithm:

Do i�N�, . . . N�

if i50 then

l�Int[(i�M�)/M]

otherwise

l�Int[(i�M�)/M]

endif

n�i�lM

(Sa)i�Si�Si
2/(Pn�nso

2)

enddo

In the above algorithm, Cn�so
2 is used for R�so

2IM and

thus C � FMRFM
H �so

2IM.

2. Two-dimensional case

As explained in Section 2.3, the diagonal part of Sa gives

the analysis error power spectrum in the discrete form
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of (Sa)ij�Sa(ki, kj) in the two-dimensional wavenumber

space, and so do the diagonal matrices S and P. For

MxBNx and MyBNy in the two-dimensional case, as

shown in (32) of Xu (2011), the ijth diagonal element of

P�PMNSPMN
T is given by

Pij ¼
XLxþ

l¼Lx�

XLyþ

l0¼Ly�

Sði þ lMx; j þ l0MyÞ for Mx� � i �Mxþ;

My� � j �Myþ; Nx� � i þ lMx � Nxþ and

Ny� � j þ l0My � Nyþ;

(A2)

where Nx�, Nx�, Mx�, Mx�, Lx� and Lx� (or Ny, Ny�,

My�, My�, Ly� and Ly�) are defined for the x (or y)

dimension in the same way as for their respective one-

dimensional counterparts in eq. (A1), and S(i�lMx,

j�l?My) denotes the [(i�lMx)(j�l?My)]th diagonal element

of S. Using eq. (A2), P can be easily calculated from S by

the following algorithm:

Do n�Nx�, . . . Nx�

if n50 then

l�Int[(n�Mx�)/Mx]

otherwise

l�Int[(n�Mx�)/Mx]

endif

i�n�lMx

Do n?�Ny�, . . . Ny�

if n?50 then

l?�Int[(n?�My�)/My]

otherwise

l?�Int[(n?�My�)/My]

endif

j�n?�l?My

Pij�Pij�Snn?

enddo

enddo

After this, the diagonal part of Sa, with its ijth diagonal

element denoted by (Sa)ij, can be easily calculated by the

following algorithm:

Do i�Nx�, . . . Nx�

if i50 then

l�Int[(i�Mx�)/Mx]

otherwise

l�Int[(i�Mx�)/Mx]

endif

n�i�lMx

Do j�Ny�, . . . Ny�

if j50 then

l?�Int[(j�My�)/My]

otherwise

l?�Int[(j�My�)/My]

endif

n?�j�l?My

(Sa)ij�Sij�Sij
2/(Pnn’�nxnyso

2)

enddo

enddo
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